WHAT ARE “SYNERGISTIC” COATINGS?

Established in 1952, General Magnaplate’s coatings met NASA’s need for a new type of surface technology that would withstand the rigors of outer space. Magnaplate-applied coatings are created in multi-step processes that begin with a series of special cleaning treatments. Enhancement of the metals is then performed by conversion, deposition, thermal spray, or by a blend-matrix of all three – depending on the coating.

The process continues with a controlled infusion of selected engineered particles and/or metals. Unlike “paint-ons”, these particles are mechanically cross-linked and locked in through a proprietary process to become an integral part of the new surface.

Since the resulting surface is dramatically superior in performance to both the base metal and any of the individual components used in the enhancement technology, General Magnaplate coatings are considered “synergistic”.

ENGINEERING DATA AND APPLICATION GUIDE

General Magnaplate’s problem solving metallurgical specialists at our Materials Technology Centers in North America help engineers increase reliability, and performance of equipment by treating metal parts with one of our many “synergistic” surface enhancement coatings.

ONE STOP SHOPPING FOR ALL YOUR COATING AND FABRICATION NEEDS

Our finishing capabilities include grinding, superfinishing, machining, polishing and diamond polishing.

Federal, industrial and MIL-SPEC coatings and platings are available.

Worn parts such as injection molds, pump impellers, rolls and platens can be coated and/or restored. In some cases, General Magnaplate can collaborate with a local partner to produce your parts complete from manufacturing to finishing. We can serve as advisor for assistance from part design to coating.

PROBLEM-SOLVING BENEFITS OF MAGNAPLATE COATINGS

• Create a harder-than-steel surface
• Allow substitution of less expensive metal
• Resist environmental and chemical corrosion
• Permanent dry lubrication
• Resist abrasion and galling
• Self-lubricating for extended wear
• Exhibit a very low coefficient of friction
• Offer superior mold release
• Eliminate sticking and product “hang-up”
• Won’t chip, peel or flake off
• Creates a smooth surface on castings
• Speed cleanup and sanitation maintenance
• Many meet FDA, USDA and other Global standards
• ITAR, RoHS and REACH compliant (International)
• Impart dielectric strength
• Radiation and UV resistant
• Reduce equipment downtime
• Can be customized for the application
<table>
<thead>
<tr>
<th>COATING DESCRIPTION</th>
<th>TUFRAM®
For Aluminum Alloys</th>
<th>NEDOX®
For Most Base Metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>These “synergistic” surface enhancement coatings create harder-than-steel, permanently dry-lubricated aluminum surfaces that resist corrosion, abrasion and galling. Treated components outwear and outperform case-hardened steel, stainless steel and hard chrome-plated parts.</td>
<td>Controlled infusion of various proprietary materials within a modified nickel alloy plating. Subsequent controlled treatment cycles assure thorough infusion of the proprietary material into the surface layer and concurrently increase hardness of the matrix. Meets and exceeds ASTM B656, ASTM B733, MIL-C-26074, Class 1, 2, 3 and 4, and its replacement specs AMS 2404 and 2405.</td>
<td></td>
</tr>
</tbody>
</table>

| **HARDNESS, WEAR AND ABRASION** | Up to Rc 65. Equilibrium Wear Rate using Taber abrasion testing method #6192 of Fed. Std. #141 (CS-17 wheel): 0.5 to 1.5 mg per 1000 cycles. Exceeds AMS requirements by 3 times. | Up to Rc 68 per ASTM B-578-87. Equilibrium Wear Rate using Taber abrasion testing methods #6192 of Fed. Std. #141 (CS-10 wheel): 2.0 to 4.0 mg per 1000 cycles. Exceeds AMS requirements by 2 times. |

| **FRICTION PROPERTIES** | Coefficient of friction: as low as 0.05. Eliminates stick-slip and undesirable vibration. | Coefficient of friction: as low as 0.09. Eliminates stick-slip problems and undesirable vibration. |

| ASTM D 1894-01 (Friction values will vary based on mating surfaces.) | |

| **CORROSION RESISTANCE** | Most TUFRAM types exceed the basic salt spray requirements of AMS 2482 and AMS 2469. Some TUFRAM coatings are resistant to alkaline and acid solutions. | Most types of NEDOX will survive 300 hours in salt spray. Selected types can withstand over 3000 hours. Coating thickness will affect corrosion resistance; special types can survive in H₂S encountered in oil field applications. |

| ASTM B 117 | |

| **TEMPERATURE** | Operating range: –360°F (~218°C) to as high as +800°F (~427°C) for intermittent operating conditions. | Operating Range: –250°F (~–157°C) to +550°F (~288°C). Some coatings will survive temperatures as high as +1400°F (~760°C). |

| (Results depend upon the process specified and the alloy used.) | |

| **THICKNESS** | Range: 0.0004" to 0.003" per side, with tolerance as low as ±0.0002". (Coating thickness is normally 50% growth per surface and 50% penetration per surface.) | Surface build-up from 0.0002" to 0.0015". |

| **FDA/USDA** | Many comply with FDA and USDA codes. | Many comply with FDA and USDA codes. |

| FDA 21 CFR 175.300 | |

| **APPLICATIONS** | TUFRAM not only improves the performance and durability of aluminum components but often allows easily machinable aluminum to replace steel or stainless in many applications. Meets ELV requirements and is REACH compliant. | Steel, stainless, copper, brass, bronze, titanium, and aluminum are the basic metals that can be enhanced by the use of one of the many types of NEDOX. Abrasion resistance, lubricity, corrosion resistance and/or mold release can be obtained through the use of NEDOX. |
FOR MORE INFORMATION:

800-852-3301
Fax: 908-862-6110
E-mail: info@magnaplate.com
Website: www.magnaplate.com

| **HI-T-LUBE®**
For Steel, Stainless, Copper Alloys |
| **MAGNADIZE®**
For Magnesium Alloys |

COATING DESCRIPTION

- This multi-layer, metallic dry-film lubricant coating is recognized by the “Guinness Book of Records” as the solid with the lowest coefficient of friction. Deposited sequentially, then through a proprietary diffusion process, it produces an extremely dense, malleable lubricating surface, capable of surviving in a broad temperature range and under high loads.

- A proprietary coating system that surpasses all other current methods of magnesium treatment for the prevention of oxidation and galling. Additional enhancement of this coating is achieved by an infusion of supplementary proprietary polymers or dry film lubricants.

HARDNESS, WEAR AND ABRASION

- Wear rate is negligible after break-in period. Can withstand extremely high compression loads (in excess of 150,000 psi).

- Up to Rc 58 to 60. Additional dry films can be applied for special longer wear characteristics.

FRICTION PROPERTIES

- **ASTM D 1894-01**
 (Friction values will vary based on mating surfaces.)

- Coefficient of friction: after break-in burnishing, as low as 0.03. Lowest coefficient of friction of any solid in the world.

- Coefficient of friction: as coated, 0.12 to 0.15; with supplementary surface coatings of dry lubricants or proprietary polymers, it can be as low as 0.04.

CORROSION RESISTANCE

- **ASTM B 117**

- Up to 200 hours in salt spray at 0.001” thickness.

- Up to 75 hours, as coated; with supplementary proprietary treatment, 300 hours; with some grades of proprietary polymer, over 1000 hours salt spray resistance is obtainable.

TEMPERATURE

- **(Results depend upon the process specified and the alloy used.)**

- Operating Range: -360°F (-218°C) to +1000°F (+538°C). Coating can be modified to withstand higher temperatures depending on application.

- Operating Range: -100°F (-73°C) to +550°F (+288°C).

THICKNESS

- Range: 0.0007” to 0.0015”. Control of coating is ±0.0003” for 0.001” thickness. Thickness may vary with application load.

- Meets the requirements of MIL-M-45202 and AMS-2476. Thickness range 0.0002 to 0.003”. Surface growth is up to 70% of total thickness, depending on type and class.

FDA/USDA

- **FDA 21 CFR 175.300**

- A solid, multi-metal lubricant that can operate in a vacuum with no outgassing or in high radiation environments. Ideal for use on splines, gears, bearings, rails, aircraft impellers, etc.

- Ideal for use on frames, housings, gear boxes, wheels and any light weight, low inertia-required components. Sealed MAGNADIZE coatings prevent outgassing in vacuum applications.
<table>
<thead>
<tr>
<th>CANADIZE®</th>
<th>MAGNAPLANE HCR®/HCR-F™</th>
<th>MAGNAPLANE HMF®</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Titanium Alloys</td>
<td>For Aluminum Alloys</td>
<td>For Most Base Metals</td>
</tr>
<tr>
<td>A hydrogen-free, super-hard, fracture-free coating process specifically developed to prevent hydrogen absorption, a major problem often encountered in the surface treatment of titanium and titanium alloys. Exceeds performance requirements of AMS 2488.</td>
<td>High-technology coatings that increase atmospheric corrosion protection beyond all known methods of aluminum treatment while also providing superior coefficient of friction.</td>
<td>The coating creates an ultra-hard, mirror-smooth, highly reflective surface that exhibits a uniquely low coefficient of friction, exceptional wear properties and high temperature resistance.</td>
</tr>
<tr>
<td>Up to Rc 45.</td>
<td>Up to Rc 48. Equilibrium Wear Rate using Taber abrasion testing method #6192 of Fed. Std. #141 (CS-17 wheel): .0275 mg per 1000 cycles. Exceeds AMS requirements by 5 times.</td>
<td>Up to Rc 68. Equilibrium Wear Rate using Taber Abrasion testing methods (CS-10 wheel): 0.2 to 0.4 mg per 1000 cycles.</td>
</tr>
<tr>
<td>Coefficient of friction: as coated 0.15; with dry film lubricants, as low as 0.04. Available with a variety of dry lubricants or can be combined with proprietary polymers.</td>
<td>Coefficient of friction: as low as 0.09.</td>
<td>Coefficient of friction as low as 0.05 without the use of polymers. Eliminates “stick slip” and undesirable vibration.</td>
</tr>
<tr>
<td>Titanium’s natural resistance to corrosion is enhanced by the CANADIZE process.</td>
<td>Total maximum achieved on 6061-T6 has exceeded 15,000 hours.</td>
<td>Exceeds 336 hours when thickness is 0.001” or greater. Cosmetics of chrome, but with greater corrosion resistance, and without the environmental concerns normally associated with chrome plating.</td>
</tr>
<tr>
<td>Operating Range: −200°F (-129°C) to +1200°F (+649°C).</td>
<td>Operating Range: −110°F (-79°C) to as high as +600°F (+316°C) in intermittent operating conditions.</td>
<td>Operating Range: −250°F (-157°C) to +950°F (+510°C).</td>
</tr>
<tr>
<td>Range: 0.0001” to 0.0006”. Titanium 6AL4V produces the best oxide coating.</td>
<td>Range: 0.001” to 0.0025” per side (±10%). Growth is approximately 50% of the thickness value.</td>
<td>Range: 0.001” to 0.002” growth per surface.</td>
</tr>
<tr>
<td>CANADIZE enhances surface hardness, eliminates galling, binding and seizing, and does not absorb hydrogen during processing. Provides permanent dry lubricity. Used extensively on aerospace and aircraft components.</td>
<td>Can be FDA and USDA compliant.</td>
<td>Complies with FDA and USDA codes.</td>
</tr>
<tr>
<td></td>
<td>MAGNAPLANE HCR on aluminum offers optimum service life for most applications — particularly where corrosion is a problem. Excellent dielectric properties—up to 2000V.</td>
<td>Recommended for packaging machines, closure devices, chutes, hoppers, folders, rolls, lathe beds, ball valves, and areas where high wear is encountered, as well as for products where a microfinish and/or static reduction is vital.</td>
</tr>
<tr>
<td>MAGNAPLATE HTR® and MAGNAMAX-HT™</td>
<td>MAGNAPLATE BTC™</td>
<td>MAGNAPLATE TNS®/TNSF™ *</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>MAGNAPLATE HTR dramatically increases release efficiency and resistance to wear at high pressures and very high temperatures.</td>
<td>Chrome replacement coating for extreme wear resistance. This functional coating is a composite structure that offers extreme wear resistance with ductility and corrosion resistance without the need to perform secondary operations such as grinding, which is usually required with hard chrome plating processes.</td>
<td>Non-stick release coatings prevent residue buildup on labeling equipment and metal parts in contact with tapes, adhesives or hot melt glue.</td>
</tr>
<tr>
<td>MAGNAMAX-HT is a solid dry film lubricant that can withstand high temperatures while providing a low coefficient of friction. Provides high oxidation resistance.</td>
<td>Hardness range Rc 60 to an equivalent of Rc 70. Taber Abrasion testing per ASTM D4060 on steel: 5.2mg weight loss per 10,000 cycles, compared to 24mg weight loss for hard chrome.</td>
<td>Typically Rc 35. Nominal abrasion resistance as measured by Taber Abrasion using CS-17 wheel; can be as low as 0.5 mg per 1000 cycles depending on surface roughness.</td>
</tr>
<tr>
<td>MAGNAPLATE HTR and MAGNAMAX-HT can be used as an additional enhancement for TUFRAM, NEDOX, or PLASMADIZE coatings.</td>
<td>As low as 0.13 dynamic, 0.14 static for HTR. MAGNAMAX-HT was tested in accordance with ASTM G 99 05 and ASTM D 1894-01. Pin on Disk test results showed an average COF of 0.266 at 800°C.</td>
<td>Generally 0.2 to 0.35 depending on surface roughness. Lower surface roughness will have lower COF at some reduction in release.</td>
</tr>
<tr>
<td></td>
<td>Average Coefficient of friction: 0.223 Static and 0.227 Kinetic, a vast improvement over chrome’s averages of 0.324 Static and 0.397 Kinetic.</td>
<td>Resistance may vary depending on materials used.</td>
</tr>
<tr>
<td></td>
<td>Tests showed no sign of corrosion after 120 hours.</td>
<td>Service temperature up to 300°F (149°C). TNSF can withstand 600°F without significant thermal degradation.</td>
</tr>
<tr>
<td></td>
<td>Some HTR coatings will survive 1000 hours in ASTM B-117 salt spray. MAGNAMAX-HT exhibits resistance to most acids and alkaline environments.</td>
<td>HTR: Operating Range: 330°F (-165°C) to +950°F (+510°C). Intermittent: over +1100°F (+593°C). Vacuum: to +2400°F (+1316°C). The maximum operating temperature for MAGNAMAX-HT is 1500°F (815°C)</td>
</tr>
<tr>
<td></td>
<td>Maximum operating temperature 900°F (450°C).</td>
<td>Service temperature up to 300°F (149°C). TNSF can withstand 600°F without significant thermal degradation.</td>
</tr>
<tr>
<td></td>
<td>Thickness range from 0.0002-0.0015”.</td>
<td>Thickness range from 0.0002-0.0015”.</td>
</tr>
<tr>
<td></td>
<td>0.002” to 0.005”.</td>
<td>0.002” to 0.005”.</td>
</tr>
<tr>
<td></td>
<td>HTR is recommended for use on injection molds, seal bars, roll dies, gears and bearings, and bag formers. MAGNAMAX-HT is ideal for applications which require a low coefficient of friction at high temperatures.</td>
<td>MAGNAPLATE TNSF has been formulated to provide adhesive and glue release along with offering FDA compliance for direct food contact. Can be engineered to comply with USDA codes.</td>
</tr>
<tr>
<td></td>
<td>Air locks, hydraulic actuators, propeller hubs, pump shafts, turbines, oilfield, helicopter and generator components, and aircraft landing gears.</td>
<td>Most parts used in the manufacture or handling of adhesives or hot melt glue. Increases service life of machinery where sticking or buildup is a problem.</td>
</tr>
</tbody>
</table>
MAGNAPLATE 10K™ SERIES
The Next Generation of High Temperature Coatings – Beat the Heat – Get Release

Each of the three types of Magnaplate 10K can be applied to select coating families. 10K series offers many benefits including release at high temperatures, low surface energy, excellent hydrophobic properties and have no PFOA or fluoropolymers.

Excellent abrasion resistance through a wide range of operating temperatures.

The 10K Series of coatings have excellent coefficient of friction values. Samples were tested per ASTM D1894, and results show that 10K coatings function after being exposed to temperatures well beyond the capabilities of standard polymer coatings.

Salt spray tests on 10K3 showed corrosion protection exceeds 2400 hours.

Operating range: –360°F (-218°C) to as high as +800°F (+427°C) for intermittent operating conditions, depending upon the process specified and the alloy used.

- **10K1 operating temperatures up to 1000°F**
- **10K2 operating temperatures up to 1000°F**
- **10K3 operating temperatures up to 850°F**

Complies with FDA and USDA codes.

Seal jaws, griddles, autoclaves, turbines, mandrels, molds and dies.

MAGNAGOLD and GOLDENEDGE
For Most Base Metals

Enhanced PVD coatings. MAGNAGOLD is processed at lower temperatures, allowing the coating of a greater variety of materials without causing loss of hardness or distortion of the substrate. GOLDENEDGE provides an ultra-hard, micro-thin surface enhancement for blades or other sharp-edged devices. Lengthening service life by as much as 20 times.

Up to a hardness equivalent of Rc 85. Equilibrium Wear Rate using Taber abrasion testing methods #6192 of Fed. Std. #141 (CS-10 wheel): 0.5mg per 10,000 cycles. A thin, dense surface coating that wears better than most metals.

Wear rate is negligible after break-in period.

As low as 0.11 depending on original microfinish or mating surface.

As low as 0.22.

Resistant to most acids, alkalis, fluxes, solders, and weld splatter.

Coating not intended for corrosive environments.

0.0002-0.002”

MAGNAGOLD – A thin uniform coating ranging in thickness from 0.00004” to 0.00030” or 1 to 7.5 microns. Meets performance requirements of AMS 2444. GOLDENEDGE – A thin uniform coating ranging in thickness from 0.00004” to 0.00006” or 1.0 to 1.5 microns.

Comply with FDA and USDA codes.

Seal jaws, griddles, autoclaves, turbines, mandrels, molds and dies.

MAGNAGOLD applications include punches, hobs, dies, bearings, taps and more; also used on aerospace components. GOLDENEDGE enhances sanitation in cutting, dicing, grinding, slicing, and sawing operations, among others. Reduces blade changing by keeping edges sharper longer.

TUFRAM OMEGA™
For Aluminum Alloys

Designed to control the resistivity range of surfaces which come in contact with electronic components. TUFRAM OMEGA not only controls the resistivity, but also provides extreme wear and abrasion resistance properties. Surface resistance between 106 and 108 ohms/cm.

Hardness in excess of Rc 65.

Wear rate using Taber abrasion testing method ASTM D4060, CS17 wheel with 1000 gm load 16mg/10,000 cycles. Even after 20,000 cycles, the conductive coating material remained in the pores of the test sample.

Stability to 200°F (93C)

0.001-0.002”

Comply with FDA and USDA codes.

TUFRAM OMEGA applications include electronic components and device manufacturing, semiconductor, LED and solar cell manufacturing, aluminum rollers and slide carriers, pick and place equipment/change kits, medical electronic instruments, telephone exchange equipment, spacecraft, satellites, generator and oilfield components.
| **PLASMADIZE®**
For Most Base Metals | **LECTROFLUOR®**
For Most Base Metals or Mixed Metal Combinations | **NEDOX PF-F™**
Low Friction and Wear Resistance without Polymers for Most Metals |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>This next generation of thermal spray coatings features high levels of wear and corrosion resistance, dry-lubricity and mold release not possible with conventional spray methods. Infused matrix of metals, ceramics, proprietary polymers and/or dry lubricants creates structural integrity and a non-porous surface.</td>
<td>A series of proprietary polymer and copolymer based coatings that exhibit superior chemical and corrosion resistance in extremely hostile environments, at both high and low temperatures. Coatings have excellent mold release properties, very low COF.</td>
<td>When particulate generation from polymers and dry lubricants are undesirable, NEDOX PF-F minimizes heat buildup and friction, and provides corrosion, wear and abrasion resistance at temperatures up to 1500°F. Non-shedding and non-outgassing.</td>
</tr>
<tr>
<td>Provides unsurpassed abrasion resistance for diffuse loads. PLASMADIZE coatings exhibit improvement in wear resistance over conventional plasma-applied tungsten carbide coatings, and up to 30% over surfaces produced by plasma-applied ceramic coatings. Long-term wear resistance is exceptional for all PLASMADIZE coatings.</td>
<td>A series of surface coatings with basic hardness ranging from Shore D 75 ~ 85.</td>
<td>Excellent wear and abrasion resistance. Hardness ranges from Rc51 (as plated), to greater than Rc 68 (with heat treatment). Taber abrasion tests per ASTM D4060 with CS10 wheel, weight loss ranges in mg/10,000 cycles from 21.5 (as plated) to 65.7 (with heat treatment).</td>
</tr>
<tr>
<td>PLASMADIZE provides a highly lubricious, non-stick surface with a coefficient of friction as low as 0.06 compared to a COF of 0.22 for thermal sprayed tungsten carbide.</td>
<td>Coefficient of friction: as low as 0.048.</td>
<td>COF ranges from Static 0.119, Kinetic 0.106 as plated; to Static 0.150 and Kinetic 0.143 with heat treatment.</td>
</tr>
<tr>
<td>PLASMADIZE coatings can exceed 1000 hours salt spray, depending on the coating type used. Resists most acids, alkalis, and organic solvents.</td>
<td>Resistance to most acid and alkaline environments is excellent. For specific chemical environments, consult General Magnaplate for the recommended LECTROFLUOR coating.</td>
<td>Exceeds 1000 hours salt spray (salt fog).</td>
</tr>
<tr>
<td>Operating Range: ~200°F (~129°C) to +1300°F (+704°C).</td>
<td>Operating Range: ~400°F (~240°C) to +600°F (+315°C).</td>
<td>Operation Range: up to 1500°F (815°C)</td>
</tr>
<tr>
<td>Normal coating thicknesses range from 0.002” to 0.010”. Thicker coatings can be applied for salvage and repair of parts, depending on the application.</td>
<td>Range: 0.001” to 0.030”.</td>
<td>0.0003-0.0015”</td>
</tr>
<tr>
<td>Many comply with FDA and USDA codes.</td>
<td>Many comply with FDA and USDA codes.</td>
<td>FDA compliant</td>
</tr>
<tr>
<td>PLASMADIZE is ideal for protecting or restoring all types of metal parts. Available as a release (non-stick) or gripping surface up to +1300°F (+704°C). Ideal for a wide range of food, packaging and oil and gas industries.</td>
<td>Recommended for use wherever lubrication, protection against corrosion, release, radiation- and UV-resistance are required. Also used in dielectric applications. 600-2000 V/mil ASTM D 149. Breakdown voltage 700v-8400v.</td>
<td>Applications include composite tooling, plastic molding and semiconductor equipment, high temperature valve applications, aerospace components.</td>
</tr>
</tbody>
</table>
The following are also available from General Magnaplate. Contact our technical sales staff for more details or quotation.

<table>
<thead>
<tr>
<th>AptiMag-X®</th>
<th>DYNALOY®</th>
<th>MAGnanoSHIELD®</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Aluminum Casting Surfaces Made With Aeromat A204 Material</td>
<td>For Most Base Metals</td>
<td>Anti-microbial Protection For Most Of Our FDA-compliant Coatings</td>
</tr>
</tbody>
</table>

AptiMag-X meets ASTM 644, AMS 2175 grade A, Mil-A-8625 T2 class 1 and T1 class 1. It is also comparable to, and meets or exceeds, SAE specs for Alocrom, chromic acid anodizing, tartaric sulfuric acid anodizing, boric sulfuric acid anodizing and many seal coatings.

DYNALOY creates a micro-surface that aids in lubricant dispersion. The coating’s hardness is in excess of Rc 67 and resists attack by most organic and inorganic compounds. With a thickness ranging from 0.0001" - 0.0003", Dynaloy does not affect tolerances and has a high temperature resistance up to 1700°F (927°C).

Typical applications include bearings, blades, clamps, conveyors, molds, pistons, rollers, pumps, tooling, valves and wear plates.

Anti-microbial protection for most of General Magnaplate’s FDA-compliant coatings. This coating offers beneficial surface properties such as FDA compliance along with protection against friction, wear, moisture and chemical resistance, in addition to microbe resistance. Benefits include up to 99.9999% reduction in bacteria and fungus, improving sanitation conditions.

MAGnanoSHIELD can improve production efficiency though the reduction of maintenance man hours, chemical cleaning materials and water usage, thereby increasing production run times.

General Magnaplate Corporation
1331 West Edgar Road (U.S. Route 1)
Linden, NJ 07036
P: (908) 862-6200 | F: (908) 862-6110

General Magnaplate New Jersey
1331 West Edgar Road
Linden, NJ 07036
P: (908) 862-6200 | F: (908) 862-0497

General Magnaplate Texas
801 Avenue G East
Arlington, TX 76011
P: (817) 640-1761 | F: (817) 640-0860

GENERAL MAGNAPLATE WORLDWIDE LICENSEES

Australia
SEC Plating Pty Ltd.
www.secp.net

Canada
Precision Surface Technologies
www.precisionrolls.com

Canada
Aluminum Surface Technologies
www.surfaceotech.ca

India
Electrochem
www.electrochempune.com

Japan
Ulvac Techno, Ltd.
www.ulvac-techno.co.jp

South Korea
YKMC, Inc.
www.ykmc.kr

Spain
Tecnocrom Industrial, S.A.
www.tecnocrom.es

United Kingdom
Poeton Industries Limited
www.poeton.co.uk

Sweden
Bodycote Ytbehandling AB
www.bodycote.se

For assistance in determining the licensee best suited to your needs, contact our International Licensee Liaison, Nemanja Marinkovic: nmarinkovic@magnaplate.com